Blog Layout

Bacterial Transformation: Cloning DNA is possible?

Aug 20, 2022

By William Huang

Transformation of bacteria dates back to the 1900s and has evolved ever since. Scientists have been making discoveries about our genetic material, DNA, previously unknown to man. Bacteria is essential for the process of the human growth cycle and can be classified into the branch of Prokaryotic. They are needed for the decomposition of organic matter and are known to have transformative properties.


Bacterial transformation can be classified as the process of transferring a foreign genetic material into a cell. Bacteria contain DNA as plasmids (small circular disks) that carry a gene of interest. One of the main purposes for bacterial transformation is to introduce a plasmid into a bacteria and replicate the plasmid in the cell. This is extremely useful in producing a targeted result for testing Another use of bacterial transformation includes duplicating DNA, called DNA cloning. In other words, a gene of interest is derived from a testing source and inserted into a plasmid. This new plasmid is referred to as a recombinant plasmid or recombinant DNA. To see if a transformation is successful, the DNA will be incorporated into one of the cell’s chromosomes.


In the midst of bacterial transformation, there is also a process called gel electrophoresis. Gel electrophoresis is a process that is used for separating nucleic acids or other macromolecules based on their size, shape or physical properties. Bacteria can be analyzed with this method and this technology allows us to study the sequence, expression, and function of a gene.


Samples of DNA such as ones from bacterial transformation can be placed into wells or indentations in a gel on one side. Each well can be labeled based on the bacteria and each side of the gel is either positive or negative. The smaller bands of DNA move quicker whereas the larger bands of DNA move slower. This is identified as the different sized molecules form bands in the gel. Because DNA is negatively charged, gravitationally, the DNA will attract to the positive side of the gel.


Citations:

https://www.sigmaaldrich.com/US/en/technical-documents/technical-article/genomics/advanced-gene-editing/transformation#:~:text=Bacterial%20transformation%20is%20a%20process,Avery%20et%20al%20in%201944.

https://www.khanacademy.org/science/biology/biotech-dna-technology/dna-cloning-tutorial/a/bacterial-transformation-selection

https://www.nature.com/scitable/definition/gel-electrophoresis-286/#:~:text=Gel%20electrophoresis%20is%20a%20laboratory,gel%20that%20contains%20small%20pores.

Image Credit:

https://www.technologynetworks.com/analysis/articles/agarose-gel-electrophoresis-how-it-works-and-its-uses-358161


27 Aug, 2022
By William Huang
22 Aug, 2022
By William Huang
19 Aug, 2022
By William Huang
More Posts
Share by: